پیش بینی تورم ایران با استفاده از مدل های ساختاری ، سری های زمانی و شبکه های عصبی

author

  • دکتر سعید مشیری
Abstract:

امروزه ، پیش بینی متغیر های کلان اقتصادی از اهمیت ویژه ای برای سیاستگذاران و سایر واحد های اقتصادی برخوردار است. در نتیجه ، دردهه های اخیر ، مدل های پیش بینی گوناگونی توسعه یافته و به رقابت با یکدیگر پرداخته اند. اخیراً به موازات مدل های متداول قبلی مانند مدل های ساختاری و سری زمانی ، مدل های دیگری تحت عنوان شبکه های عصبی مصنوعی در زمینه پیش بینی متغیر های مالی و پولی بکار گرفته شده اند. این مدل ها که در حقیقت اقتباس از فرایند یادگیری مغر انسان هستند ، با استفاده از سرعت محاسباتی کامپیوتر ، روابط بین متغیرها را هرچند پیچیده باشد ، یاد گرفته و از آن برای پیش بینی مقادیر آتی استفاده می نمایند. از ویژگی های مهم این مدل ها می توان به آزادی آنها از فروض آماری مربوط به متغیرها ، استفاده از روشهای محاسباتی موازی و غیر خطی بودن آنها اشاره نمود. در این مقاله ، علاوه بر معرفی مدل های شبکه های عصبی و نحوه کاربرد آنها در اقتصاد ، یک مدل شبکه عصبی برای پیش بینی تورم در ایران با استفاده از اطلاعات سالهای (1377- 1338) طراحی و اجرا شده است. نتایج بدست آمده حاکی از آن است که مدل های شبکه های عصبی در غالب موارد عملکرد بهتری در زمینه پیش بینی تورم دوره آتی در ایران نسبت به رقبای خود دارند.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

کاربردهای شبکه های عصبی در پیش بینی سری های زمانی

استفاده از روش های غیر کلاسیک در شناسایی مدل و پیش بینی رفتار سیستم های پیچیده، مدتهاست در محافل علمی و حتی حرفه ای متداول و معمول شده است. در بسیاری از سیستم های پیچیده و خصوصا غیر خطی که مدل سازی و به دنبال آن پیش بینی و کنترل آنها از طریق روش های کلاسیک و تحلیلی امری بسیار دشوار و حتی بعضا غیر ممکن می نماید، از روش های غیر کلاسیک که از ویژگی هایی همچون هوشمندی، مبتنی بر معرفت و خبرگی برخوردا...

full text

مقایسه ی مدل های شبکه های عصبی مصنوعی و سری های زمانی برای پیش بینی قیمت گوشت مرغ در ایران

     با توجه به اهمیت پیش بینی قیمت گوشت مرغ، در تحقیق حاضر قیمت این محصول با استفاده از روش ARIMA و شبکه های عصبی مصنوعی برای افق های زمانی یک ماهه، شش ماهه و دوازده ماهه پیش بینی گردید و این فرضیه که شبکه ی عصبی در پیش بینی قیمت گوشت مرغ از کارایی بیشتری نسبت به  مدل های سری زمانی برخوردار است، مورد بررسی قرار گرفت. داده های مربوط به این متغیّر برای دوره ی  زمانی1371:1 تا 1385:11 بوده و  از شر...

full text

استفاده از مدل های سری زمانی، شبکه عصبی و ماشین بردار پشتیبان جهت پیش بینی دبی ورودی به سد گرگان

پیش­بینی مقادیر جریان ورودی به سیستم منابع آب به­منظور آگاهی از شرایط آینده و برنامه­ریزی برای تخصیص بهینه منابع آب به بخش­های مختلف از قبیل شرب، کشاورزی و صنعتی امری ضروری در مدیریت منابع آب می­باشد. هدف از پژوهش حاضر پیش­بینی مقادیر دبی ماهانه ورودی به سد گرگان برای آینده بود. بدین منظور از داده­های هیدرومتری ایستگاه قزاقلی با دوره­ آماری 47 سال و سه مدل سری­زمانی، شبکه عصبی و ماشین بردار پشت...

full text

استفاده از رهیافت های شبکه عصبی و مدل های خودرگرسیونی در پیش بینی رشد اقتصادی ایران

یکی از مسائل مهم در اقتصاد پیش بینی رشد اقتصادی می باشد که با توجه به اینکه، پیش بینی صحیح رشد اقتصادی، آثار مهمی در سیاست گذاری و برنامه ریزی های اقتصادی دولت دارد و می تواند علاوه بر ایجاد زمینه‌ی توسعه روش های جدید پیش بینی، سیاست گذاران را در تصمیم گیری آتی یاری رساند، لذا هدف این مقاله پیش بینی رشد اقتصادی ایران با استفاده از سه مدل شبکه عصبی، میانگین متحرک خودرگرسیون تجمعی، خودرگرسیون وار...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 36  issue 1

pages  -

publication date 2001-03-21

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023